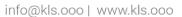


140153, Московская область, Раменский р-он, с. Быково, ул. Театральная, дом 10, оф. А303

ОТЧЕТ

Диагностика лифтового оборудования, установленного по адресу: г. Москва, ****

г. Москва - 2024г.



Содержание:

Раздел 1. Дата, адрес и условия проведения работ	3
Раздел 2. Нормативно-методическое обеспечение и термины	
Раздел 3. Приборы и оборудование	4
Раздел 4. Описания способа и методика измерения	
Раздел 5. Участники обследования	11
Раздел 6. Техническая характеристика объекта обследования	12
Раздел 7. Произведённые работы	12
Раздел 8. Результаты	13
Раздел 9. Выводы:	18
Раздел 10. Рекомендации:	18
Приложение	Закланка не опреценена

Раздел 1. Дата, адрес и условия проведения работ

Дата обследования	2024Γ.
Адм. Округ	Москва
Район	***
Адрес дома	***

Дата написания отчета	***

Раздел 2. Нормативно-методическое обеспечение и термины

Руководство по техническому обслуживанию Kone MiniSpace	
Руководство по эксплуатации тяговых канатов Gustav Wolf	
Технический регламент таможенного союза ТР ТС 011/2011 БЕЗОПАСНОСТЬ	
ЛИФТОВ	
ГОСТ Р 55969-2014 «Лифты. Ввод в эксплуатацию. Общие требования»	
ГОСТ 53780 «Общие требования безопасности к устройству и установке»	
ГОСТ Р 55964-2014 «Лифты. Общие требования безопасности при эксплуатации»	
ГОСТ Р 55965-2014 «Лифты. Общие требования к модернизации находящихся в	
эксплуатации лифтов».	
ГОСТ Р 55967-2014 (ЕН 81-21:2009) «Лифты. Специальные требования	
безопасности при установке новых лифтов в существующие здания»	
ГОСТ 53783-2010 " Лифты. Правила и методы оценки соответствия лифтов в	
период эксплуатации"	

140153, Московская область, Раменский р-он, с. Быково, ул. Театральная, дом 10, оф. А303

Раздел 3. Приборы и оборудование

Приборы и оборудование	
1. Устройство для смазки стальных канатов МГ-2000	
2.	Измеритель сопротивления петли «фаза -нуль» «фаза-фаза» ИФН-300
3.	Ручной инструмент

140153, Московская область, Раменский р-он, с. Быково, ул. Театральная, дом 10, оф. А303

Устройство для измерения качества поездки лифта

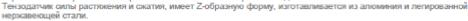
- Анализ качества поездки лифта согласно ISO 18738
- Измерение параметров езды: ускорение, замедление, рывки, скорость и расстояние.
- Автоматический поиск проблемы
- Настройка индивидуальных значений для каждого лифта предельных
- Создание отчетов
- Программный модуль для:
- Анализа вибраций и шума
- Анализа аварийной остановки

Устройство для профессиональной диагностики лифта

- Высокое разрешение и частый шаг записи данных
- Разные датчики ускорения, рассчитанные для широкого частотного диапазона ($\pm 2g/10g/20g$)
- Анализ качества поездки лифта согласно ISO 18738
- Измерение параметров езды: ускорение, замедление, рывки, скорость и расстояние.
- Автоматический поиск проблемы
- Настройка индивидуальных предельных значений для каждого лифта

140153, Московская область, Раменский р-он, с. Быково, ул. Театральная, дом 10, оф. А303

Измерение натяжение канатов с помощью прибора MSM12 Henning



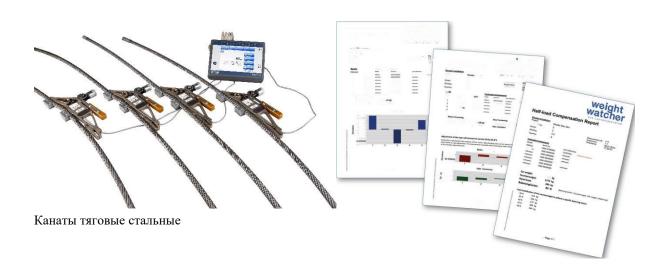
Описание способа и методика измерения.

Тензометрия (от лат. tensus — напряжённый) — это способ и методика измерения напряжённо-деформированного состояния измеряемого объекта или конструкции. Дело в том, что нельзя напряжую измерить механическое напряжение, поэтому задача состоит в измерении деформации объекта и вычислении напряжения при помощи специальных методик, учитывающих физические свойства материала. В основе работы тензодатчиков лежит тензоэффект — это свойство твёрдых материалов изменять своё сопротивление при различных деформациях. Тензометрический датчик представляют собой устройство, которое измеряет упругую деформацию твердого тела и преобразуют её величину в электрический сигнал. Этот процесс происходит при изменении сопротивления проводника датчика при его растяжении и сжатии. Они являются основным элементом в приборе по измерению деформации твёлых тел.

Устройство и принцип работы

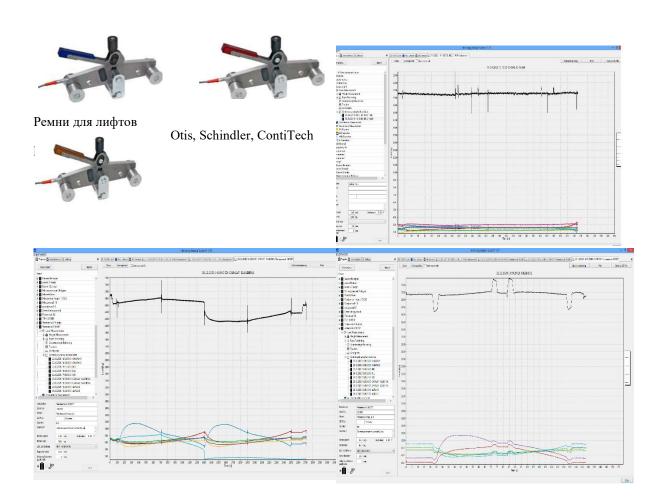
Основу тензодатчика составляет тензорезистор, оснащенный специальными контактами, закрепленными на передней части измерительной панели. В процессе измерения чувствительные контакты панели соприкасаются с объектом. Происходит их деформация, которая измеряется и преобразуется в электрический сигнал, передаваемый на элементы обработии и отображения измеряемой величины тензометрического датчика.

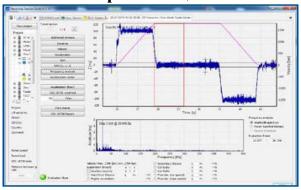
Электронная обработка сигнала



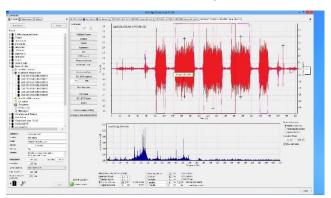
Тензометрия (от лат. Tensus — напряжённый) — это способ и методика измерения напряжённодеформированного состояния измеряемого объекта или конструкции. Дело в том, что нельзя
напрямую измерить механическое напряжение, поэтому задача состоит в измерении
деформации объекта и вычислении напряжения при помощи специальных методик,
учитывающих физические свойства материала. В основе работы тензодатчиков лежит **Тензоэфект** — это свойство твёрдых материалов изменять своё сопротивление при различных
деформациях. Тензометрический датчик представляют собой устройство, которое измеряет
упругую деформацию твердого тела и преобразуют её величину в электрический сигнал. Этот
процесс происходит при изменении сопротивления проводника датчика при его растяжении и
сжатии. Они являются основным элементом в приборе по измерению деформации твёрдых тел.

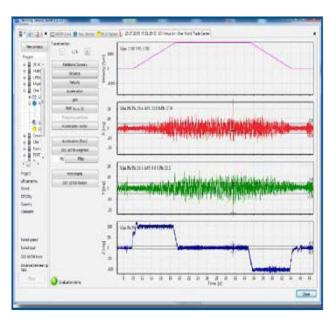
Устройство и принцип работы

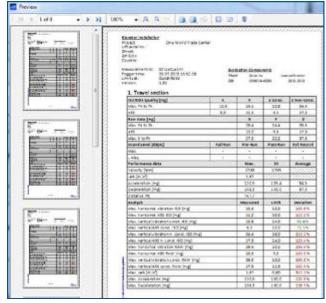

Основу тензодатчика составляет тензорезистор, оснащенный специальными контактами, закрепленными на передней части измерительной панели. В процессе измерения чувствительные контакты панели соприкасаются с объектом. Происходит их деформация, которая измеряется и преобразуется в электрический сигнал, передаваемый на элементы обработки и отображения измеряемой величины тензометрического датчика. Тензодатчик силы растяжения и сжатия, имеет Z-образную форму, изготавливается из алюминия и легированной нержавеющей стали.


Мировые производители стальных канатов рекомендуют использовать данный прибор при монтаже стальных канатов и в дальнейшем контролировать их в период эксплуатации. Равномерное натяжение канатов позволяет сохранить оборудование лифта в исправном состоянии на весь срок службы, такие узлы как КВШ (канатоведущий шкив), отводные блоки, подвеска, пружины будут работать в исправном состоянии и изнашиваться равномерно в соответствии с его назначенным сроком службы.

По изменению нагрузки на канат, который приведён на графике, можно сделать вывод о том, как подобрано и смонтировано оборудование, имеется ли «закрутка» канатов, имеют ли они равномерную степень натяжения, что в свою очередь на прямую влияет на качество работы, как самих тяговых канатов, так и на узлы описанные выше.


0


140153, Московская область, Раменский р-он, с. Быково, ул. Театральная, дом 10, оф. А303


Измеряем и оцениваем

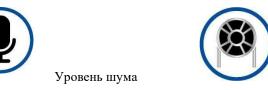
Анализ и оценка

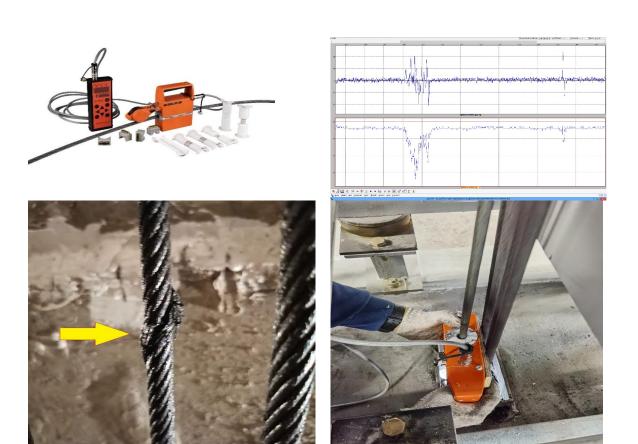
Дистанцию

Время в пути Направляющие

КВШ

info@kls.ooo| www.kls.ooo


140153, Московская область, Раменский р-он, с. Быково, ул. Театральная, дом 10, оф. А303



Проскальзывание канатов

Не разрушающий контроль тяговых канатов с помощью Магнитного дефектоскопа МГ6-24F

Целью проведения дефектоскопии стальных канатов данным прибором — обнаружение его дефектов в виде потери сечения и обрыва проволок внутреннего или внешних слоев. Сопоставляя параметры обнаруженных дефектов с критериями браковки, можно сделать объективное заключение о возможности дальнейшей эксплуатации данного каната и оценить его

0

140153, Московская область, Раменский р-он, с. Быково, ул. Театральная, дом 10, оф. А303

остаточный ресурс. С помощью данного прибора можно легко проверить и оценить качество тягового каната, и спрогнозировать остаточный ресурс по его безопасной эксплуатации.

МНОГОЕ ДРУГОЕ

Механическими источниками возникновения вибрации в работающих в номинальном режиме подъемных машинах (лифтах) являются колебательные силы периодического, случайного и ударного происхождения. Причинами же возникновения самих колебательных сил являются: неточность монтажа направляющих и сборки деталей купе и каркасов кабины, противовеса, неточность сборки узлов лебедки и всей лифтовой системы в целом, недостаток или несоответствие смазки, эксплуатационные дефекты деталей и узлов и др. Результатом действия отдельно взятых колебательных сил и их комбинаций (как правило, сумм или произведений) являются компоненты вибрации с характерными частотными спектрами. Здесь необходимо отметить, что при описании произведения сил в вибродиагностике ограничиваются случаем, когда частота основной (модулируемой) силы во много раз превосходит частоту модулирующей силы, а сама модулирующая сила является периодической с частотами, как правило, определяемыми частотой вращения деталей и узлов лифта.

Данный прибор QS3 Henning анализирует качество поездки в трех осях, записывает профиль поездки по времени, скорости и расстоянию. Фиксирует все отклонения в момент перемещения кабины по шахте, измеряет скорость, ускорение, замедление. Анализирует данные и помогает быстро найти проблему, влияющую на комфортную поездку в кабине лифта. И все это благодаря снятию профилей вибрации в трех осях X, Y, Z при движении кабины по шахте. После анализа и сопоставления данных мы можем увидеть узел или элемент, который производит определенные колебания при этой скорости, т.е. создает «шум».

Раздел 5. Участники обследования

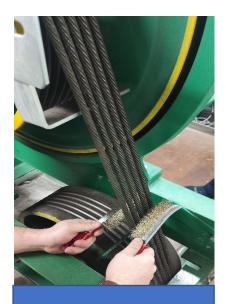
Организации	Участники обследования
ООО «КЛС»	Данилов Владислав Евгеньевич
ООО «КЛС»	Саволайнен Максим Яковлевич

Раздел 6. Техническая характеристика объекта обследования

_		
Серия проекта	индивидуальный проект	
Год постройки	1979	
Высота подъема, м	18,0	
Подъездов	1	
Стены	кирпичные	
Перекрытия	железобетонные	
Машинное помещение	с машинным помещением	
оборудование Количество канатов на пифте		
Количество канатов на лифте	5	
Скорость лифта, м/с	1	
Грузоподъемность, кг	1000	
Тип лифта	Электрический	
Производитель лифтов	Kone	
Модель лифта	MiniSpace	
Заводской номер лифта	***	
Количество тяговых элементов на лифте, шт на лифтах KONE	5	
Диаметр каната на лифтах KONE	13	

Раздел 7. Произведённые работы

- 1. Смазка тяговых канатов на лифте № ***
- 2. Проверка износа тяговых канатов и ручьёв КВШ на лифте № ***


Н,

140153, Московская область, Раменский р-он, с. Быково, ул. Театральная, дом 10, оф. А303

Раздел 8. Результаты

Смазка тяговых канатов на лифте № ***

Предварительная очистка поверхности тяговых канатов от загрязнений

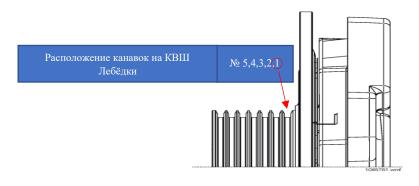
Нанесение смазки Gustav Wolf T-86 на тяговые канаты с помощью автоматического устройства

Общее фото тяговых канатов до проведения смазочных работ

Общее фото тяговых канатов после проведения смазочных работ

Проверка износа тяговых канатов и ручьёв КВШ на лифте № ***

поверхностью и тяговым канатом №5,



140153, Московская область, Раменский р-он, с. Быково, ул. Театральная, дом 10, оф. А303

Измерение разницы степени износа канавок КВШ

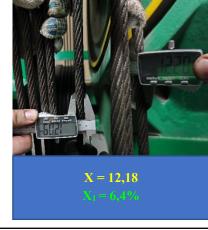
5.2

140153, Московская область, Раменский р-он, с. Быково, ул. Театральная, дом 10, оф. А303

Измерение диаметра тяговых канатов производится в 2х плоскостях и берётся среднее арифметическое значение $\frac{x}{x_1} = (a^1 + a^2) / 2$. Которое используется при расчёте величины потери сечения $\frac{x}{x_1} = (x \times 100\%) / 13$ (где 13 номинальный диаметр тяговых канатов)

X = 12,43 $X_1 = 4,4\%$

Канат №4


X = 12,40 $X_1 = 4.7\%$

Канат №3

X = 12,51 $X_1 = 3,8\%$

- По итогам проверки ручным инструментом тяговых канатов локальных дефектов не выявлено, потеря сечения составляет не более 6,4%.

РД РОСЭК 012-97

4.3. При уменьшении диаметра каната в результате поверхностного износа (рис. 5) или коррозии (рис. 6) на 7% и более по сравнению с номинальным диаметром канат подлежит браковке даже при отсутствии видимых обрывов проволок.

Инструкция KONE

1.5 Износ поверхности.

Износ происходит на внешних и внутренних проволоках. Если диаметр каната изменился на 7% или более от номинального диаметра, канат должен быть заменен даже если нет разорванных проволок. Приложение 1 - график изменения диаметра каната при "нормальном использовании".

Раздел 9. Выводы:

- 1. По итогам проверки КВШ на лифте N_0 *** разница износа канавок достигает 0.3мм, согласно инструкции завода изготовителя КОNE разница износа не должна превышать 0,2мм.
- 2. По итогам проверки тяговых канатов на лифте № *** максимальное уменьшение диаметра обнаружено на канате №1 и составляет 6,4% при максимально допустимых 7%.

Раздел 10. Рекомендации:

- 1. Заменить КВШ на лифте № ***
- 2. Заменить тяговые канаты на лифте на лифте № *** (учитывая факт износа КВШ)
- 3. Заменить пружины подвески тяговых канатов на лифте № ***
- 4. Сразу после замены тяговых канатов произвести регулировку их натяжения.

По совокупности полученных данных на лифте № *** рекомендуем приступить к поиску и закупке необходимых для замены комплектующих. С учётом сложившейся на рынке ситуации и трудностями с закупкой запасных частей импортных производителей лифтов, до момента замены комплектующих необходимо усилить контроль за состоянием тяговых канатов и КВШ, производить визуальный и инструментальный осмотр не реже 1 раза каждые 2 месяца.

С уважением,

Зубов Дмитрий Анатольевич Генеральный директор

